2的算术平方根

2的算术平方根

2的算术平方根可以表示为以下的级数或无穷乘积:

1

2

=

k

=

0

(

1

1

(

4

k

+

2

)

2

)

=

(

1

1

4

)

(

1

1

36

)

(

1

1

100

)

{\displaystyle {\frac {1}{\sqrt {2}}}=\prod _{k=0}^{\infty }\left(1-{\frac {1}{(4k+2)^{2}}}\right)=\left(1-{\frac {1}{4}}\right)\left(1-{\frac {1}{36}}\right)\left(1-{\frac {1}{100}}\right)\cdots }

2

=

k

=

0

(

4

k

+

2

)

2

(

4

k

+

1

)

(

4

k

+

3

)

=

(

2

2

1

3

)

(

6

6

5

7

)

(

10

10

9

11

)

(

14

14

13

15

)

{\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }{\frac {(4k+2)^{2}}{(4k+1)(4k+3)}}=\left({\frac {2\cdot 2}{1\cdot 3}}\right)\left({\frac {6\cdot 6}{5\cdot 7}}\right)\left({\frac {10\cdot 10}{9\cdot 11}}\right)\left({\frac {14\cdot 14}{13\cdot 15}}\right)\cdots }

2

=

k

=

0

(

1

+

1

4

k

+

1

)

(

1

1

4

k

+

3

)

=

(

1

+

1

1

)

(

1

1

3

)

(

1

+

1

5

)

(

1

1

7

)

.

{\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }\left(1+{\frac {1}{4k+1}}\right)\left(1-{\frac {1}{4k+3}}\right)=\left(1+{\frac {1}{1}}\right)\left(1-{\frac {1}{3}}\right)\left(1+{\frac {1}{5}}\right)\left(1-{\frac {1}{7}}\right)\cdots .}

1

2

=

k

=

0

(

1

)

k

(

π

4

)

2

k

(

2

k

)

!

.

{\displaystyle {\frac {1}{\sqrt {2}}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}\left({\frac {\pi }{4}}\right)^{2k}}{(2k)!}}.}

2

=

k

=

0

(

1

)

k

+

1

(

2

k

3

)

!

!

(

2

k

)

!

!

=

1

+

1

2

1

2

4

+

1

3

2

4

6

1

3

5

2

4

6

8

+

.

{\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }(-1)^{k+1}{\frac {(2k-3)!!}{(2k)!!}}=1+{\frac {1}{2}}-{\frac {1}{2\cdot 4}}+{\frac {1\cdot 3}{2\cdot 4\cdot 6}}-{\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6\cdot 8}}+\cdots .}

2

=

k

=

0

(

2

k

+

1

)

!

(

k

!

)

2

2

3

k

+

1

=

1

2

+

3

8

+

15

64

+

35

256

+

315

4096

+

693

16384

+

.

{\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }{\frac {(2k+1)!}{(k!)^{2}2^{3k+1}}}={\frac {1}{2}}+{\frac {3}{8}}+{\frac {15}{64}}+{\frac {35}{256}}+{\frac {315}{4096}}+{\frac {693}{16384}}+\cdots .}

2的算术平方根的连分数展开式为:

2

=

1

+

1

2

+

1

2

+

1

2

+

1

.

{\displaystyle \!\ {\sqrt {2}}=1+{\cfrac {1}{2+{\cfrac {1}{2+{\cfrac {1}{2+{\cfrac {1}{\ddots }}}}}}}}.}

[注1]

相关推荐

如何复制单篇微博链接?
365bet365在线

如何复制单篇微博链接?

🕒 07-06 👀 3283
芒字的成语有哪些
365上怎么买比分

芒字的成语有哪些

🕒 06-30 👀 2771