2的算术平方根可以表示为以下的级数或无穷乘积:
1
2
=
∏
k
=
0
∞
(
1
−
1
(
4
k
+
2
)
2
)
=
(
1
−
1
4
)
(
1
−
1
36
)
(
1
−
1
100
)
⋯
{\displaystyle {\frac {1}{\sqrt {2}}}=\prod _{k=0}^{\infty }\left(1-{\frac {1}{(4k+2)^{2}}}\right)=\left(1-{\frac {1}{4}}\right)\left(1-{\frac {1}{36}}\right)\left(1-{\frac {1}{100}}\right)\cdots }
2
=
∏
k
=
0
∞
(
4
k
+
2
)
2
(
4
k
+
1
)
(
4
k
+
3
)
=
(
2
⋅
2
1
⋅
3
)
(
6
⋅
6
5
⋅
7
)
(
10
⋅
10
9
⋅
11
)
(
14
⋅
14
13
⋅
15
)
⋯
{\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }{\frac {(4k+2)^{2}}{(4k+1)(4k+3)}}=\left({\frac {2\cdot 2}{1\cdot 3}}\right)\left({\frac {6\cdot 6}{5\cdot 7}}\right)\left({\frac {10\cdot 10}{9\cdot 11}}\right)\left({\frac {14\cdot 14}{13\cdot 15}}\right)\cdots }
2
=
∏
k
=
0
∞
(
1
+
1
4
k
+
1
)
(
1
−
1
4
k
+
3
)
=
(
1
+
1
1
)
(
1
−
1
3
)
(
1
+
1
5
)
(
1
−
1
7
)
⋯
.
{\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }\left(1+{\frac {1}{4k+1}}\right)\left(1-{\frac {1}{4k+3}}\right)=\left(1+{\frac {1}{1}}\right)\left(1-{\frac {1}{3}}\right)\left(1+{\frac {1}{5}}\right)\left(1-{\frac {1}{7}}\right)\cdots .}
1
2
=
∑
k
=
0
∞
(
−
1
)
k
(
π
4
)
2
k
(
2
k
)
!
.
{\displaystyle {\frac {1}{\sqrt {2}}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}\left({\frac {\pi }{4}}\right)^{2k}}{(2k)!}}.}
2
=
∑
k
=
0
∞
(
−
1
)
k
+
1
(
2
k
−
3
)
!
!
(
2
k
)
!
!
=
1
+
1
2
−
1
2
⋅
4
+
1
⋅
3
2
⋅
4
⋅
6
−
1
⋅
3
⋅
5
2
⋅
4
⋅
6
⋅
8
+
⋯
.
{\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }(-1)^{k+1}{\frac {(2k-3)!!}{(2k)!!}}=1+{\frac {1}{2}}-{\frac {1}{2\cdot 4}}+{\frac {1\cdot 3}{2\cdot 4\cdot 6}}-{\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6\cdot 8}}+\cdots .}
2
=
∑
k
=
0
∞
(
2
k
+
1
)
!
(
k
!
)
2
2
3
k
+
1
=
1
2
+
3
8
+
15
64
+
35
256
+
315
4096
+
693
16384
+
⋯
.
{\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }{\frac {(2k+1)!}{(k!)^{2}2^{3k+1}}}={\frac {1}{2}}+{\frac {3}{8}}+{\frac {15}{64}}+{\frac {35}{256}}+{\frac {315}{4096}}+{\frac {693}{16384}}+\cdots .}
2的算术平方根的连分数展开式为:
2
=
1
+
1
2
+
1
2
+
1
2
+
1
⋱
.
{\displaystyle \!\ {\sqrt {2}}=1+{\cfrac {1}{2+{\cfrac {1}{2+{\cfrac {1}{2+{\cfrac {1}{\ddots }}}}}}}}.}
[注1]